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a b s t r a c t 

Although crowd analysis is a classical and extensively studied problem for the computer vision commu- 

nity, the vast majority of the works in the literature assume a single type of crowd, while the sociological 

literature classifies a number of different typologies, each one with their own distinctive traits. In this 

paper we focus on a particular kind of crowd referred in sociology as spectator crowd , which consists a 

number of people that are “interested in watching something specific that they came to see” Berlonghi 

(1995). This is the typical social formation that attends entertainment events like sport matches, con- 

certs, movies, etc. In this work we present a novel dataset, the Spectators Hockey ( S-Hock ), containing 

almost 30 hours of videos recorded at an ice hockey rink during the Winter Universiade “Trentino2013”. 

On these data we provide a massive annotation, focusing on the spectators at different levels of detail: 

from high level features describing which team a person supports and if he/she knows his/her neighbors; 

to a lower level, where we consider standard pose information as well as atomic actions like applauding, 

jumping, etc. We also provide annotations for the game field, which allows us to analyze the relationship 

between the crowd behavior and the events of the match. Eventually we provide more than 100 million 

of annotations, that can be used for many different tasks spanning from standard applications, like people 

counting and head pose estimation, to higher level tasks, like excitement estimation and automatic sum- 

marization. We provide protocols and baseline results for all of these applications, encouraging further 

research in these field. 

© 2017 Elsevier Inc. All rights reserved. 
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. Introduction 

Crowds are more and more a feature of our urban life. Model-

ng and predicting their dynamics is therefore pivotal from several

oints of view, ranging from organizing and planning to surveil-

ance and public safety management. Capturing and understand-

ng crowd dynamics, indeed, may help preventing and/or manag-

ng critical situations. Given the complexity of the task, however,

e believe this has to be an interdisciplinary endeavor. 

In computer vision, a crowd is defined as an entity that is

dentified when “the density of the people is sufficiently large to

isable individual and group identification” ( Jacques Júnior et al.,

010 ). From a sociological perspective, this is a quite general def-

nition, encompassing different kinds of crowds, whose members

ehave in very different ways accordingly. As we are about to
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ee, a thorough review of the sociological literature allows to dis-

inguish four kinds of crowd. Further, it is important to consider

hat crowds, better defined as large gatherings ( Goffman, 1961;

963; McPhail, 1991 ), are not homogeneous (not all members

re the same), nor unanimous (not all have the same motive/s),

or mutually inclusive (not all behave the same), nor continuous

mutually inclusive behavior, when present, is not uninterrupted).

arge gatherings are characterized instead by alternating individ-

al and collective actions, whereby both vary in quality, and col-

ective action present varied proportions of co-present people en-

aged in any particular action. Therefore, the “crowd mind” is a

yth ( McPhail, 1991 ), and crowds can encompass smaller groups

ith which members do identify (just think to a family at the sta-

ium). 

The four categories into which crowds can be divided are the

ollowing 1 : 
1 see Bassetti (2016) for more details on this taxonomy. 

http://dx.doi.org/10.1016/j.cviu.2017.01.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.01.003&domain=pdf
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2 Football-related arrests and football banning order statistics, Season 2013–14, 

available online at http://goo.gl/j9yYYQ . 
3 http://goo.gl/xMU2Zf . 
4 http://www.citysecuritysummit.com/ . 
5 http://www.uefa.org/protecting- the- game/security/ . 
6 http://www.ecaeurope.com/news/essma- summit- 2016/ . 
1. prosaic ( McPhail, 1991 ) or casual ( Blumer, 1951; Goode,

1992 ) crowds consist of large collections of individuals shar-

ing no more than a spatio-temporal location, that is, they are

co-present by chance and they do not share a single focus of

attention and action (unfocused interaction ( Goffman, 1961;

1963; 1981 )). People in line at airport security checkpoints,

or pedestrians in the streets are a couple of examples; 

2. spectator ( Berlonghi, 1995; McPhail, 1991 ) or conven-

tional ( Blumer, 1951; Goode, 1992 ) crowds are ensembles of

people gathering for specific social events, such as theatrical

performances or sport matches precisely. Being basically au-

diences, people in spectator crowds have a common focus of

attention and action (common-focused interaction ( Goffman,

1961; Kendon, 1988 )); 

3. expressive crowd ( Blumer, 1951; Goode, 1992 ) are collections

of individuals who gather for a social event and who intend

to act as fully active members, that is to participate in col-

lective action. Examples range from flash-mob dancers, to

Mass participants, to sport supporters (not just attendees)

that get together to dance, to ritually pray, to cheer. Action

is concerted rather than just common, and the focus of at-

tention is jointly shared among participants (jointly-focused

interaction ( Goffman, 1961; Kendon, 1988 )); 

4. demonstration/protest ( McPhail, 1991 ) or acting ( Blumer,

1951; Goode, 1992 ) crowds are collections of people gath-

ered for events such as mobs, riots, sit-ins or marches who

intend to participate in collective action. Therefore, action is

concerted and interaction is jointly-focused. 

Under this taxonomy, we can say that most of the extant

computer vision approaches focus primarily on casual ( Chan and

Vasconcelos, 2009; Kratz and Nishino, 2010; Raghavendra et al.,

2011 ), and protest crowds ( Krausz and Bauckhage, 2012 ), with hun-

dreds of techniques and various datasets, whereas very few (if

any) deal with spectator crowds and their expressive segments

(e.g., sport match attendants and groups of supporters within).

In computer vision, crowd analysis focuses on modeling large

masses, where a single person cannot be finely characterized, due

to the low resolution, frequent occlusions and the particular dy-

namics of the scene. Therefore, many state-of-the-art algorithms

for person detection and re-identification, multi-target tracking,

and action recognition cannot be directly applied in this context.

As a consequence, crowd modeling has developed its own tech-

niques such as multi-resolution histograms ( Zhong et al., 2004 ),

spatio-temporal cuboids ( Kratz and Nishino, 2009 ), appearance or

motion descriptors ( Andrade et al., 2006 ), spatio-temporal vol-

umes ( Laptev, 2005 ), dynamic textures ( Mahadevan et al., 2010 ),

computed on top of the flow information. The extracted informa-

tion is then employed to learn different dynamics like Lagrangian

particle dynamics ( Raghavendra et al., 2011 ), and in general fluid-

dynamic models. The most important applications of crowd analy-

sis are abnormal behavior detection ( Mahadevan et al., 2010 ), de-

tecting/tracking individuals in crowds ( Kratz and Nishino, 2010 ),

counting people in crowds ( Chan and Vasconcelos, 2009 ), iden-

tifying different regions of motion and segmentation ( Sand and

Teller, 2008 ). Only recently, Navarathna et al. (2014) started work-

ing on spectators of movies, trying to infer movie ratings from

their behavior during the show. In this paper the authors present

a regression method to estimate the rating of a film by using mo-

tion history features, both on the individual and group level, and

support vector regression. They tested their algorithm on a testbed

environment that contains a maximum of 10 people per session. In

our case, the amount of people considered is much higher (from

150 to 500 people). 

The above mentioned lack of attention to spectator crowds and

their specific dynamics is threatening. From a recent study, con-
ucted in 2014 by the UK Home Office, 2 disorders at stadiums

aused 2273 arrests only considering the FA (Football Association)

ompetitions in the last year. Moreover, in the last 60 years, 1447

eople died and at least 4600 were injured at the stadiums during

ajor events around the world. 3 These statistics motivated in sev-

ral countries the implementation of emergency plans to ensure

afety and a better management of critical situations. This is here

here computer vision may consistently help. Stadiums can often

e targets of violence. Hence, protecting event goers, stadium staff,

vent performers and athletes becomes a priority. This need grew

n importance in these last years; as one of the most evident sig-

als of this trend, many international summits are occurring and

ill occur in the next months. For example, the European City and

ublic Security Summit in 2017 in London will bring together pol-

cy makers and leading experts from the private and public sec-

or, including former and current police and counter terrorism ser-

ices and the heads of Security of some of Europe’s largest sports,

eisure, retail and public attractions. 4 As another example, the an-

ual UEFA/EU conference takes place every year at the start of the

eason. The conference brings together national associations’ secu-

ity officers, stadium safety managers, club safety officers and po-

ice representatives from all European clubs that have qualified for

he next season of the UEFA Champions League and UEFA Europa

eague. Over 350 delegates review the past season, exchange good

ractices and discuss arrangements for the upcoming matches. The

igh attendance reflects the increased scope of stadium and secu-

ity affairs, and the importance attached to it by authorities and

he football family across Europe. The latest conference took place

n Bucharest in September 2016. 5 The ESSMA Stadium Summit

ather stadium experts, club and league representatives to discuss

arious aspects of stadium management, including, but not limited

o, fan entertainment, safety and security, commercial exploitation

nd pitch management. 6 

The present article is an initial attempt to address this topic,

nd offers the first dataset on the subject, the Spectators Hockey

 S-Hock ). It regards an international hockey competition (12 coun-

ries from all around the world have been invited) held in Trento

Italy) during the 26th Winter Universiade, and focuses on the final

 matches of the tournament. The dataset is unique in the crowd

iterature, and in general in the surveillance realm, since the crowd

s a whole is mostly static and the motion of each spectator is con-

trained within a limited space in his/her surroundings. 

S-Hock captures the crowd using 4 cameras, at different reso-

utions and different levels of detail ( Fig. 1 ). At the highest level,

t models the network of social relations among the public (who

nows whom in the proximity), what is the supported team, and

hat has been the best action in the match; these data have been

athered through structured questionnaires conducted at the sta-

ium for each match. At a medium level, spectators are localized,

nd information regarding the pose of their heads and bodies is

iven. Finally, at the lowest level, a fine grained specification of all

he actions performed by each single person is available. This infor-

ation is summarized by a large number of annotations, collected

ver a year of work: more than 100 million of double checked an-

otations. By far, this is a consistent step ahead in the field of the

ne grained activity recognition. Indeed, S-Hock potentially allows

o deal with hundreds of tasks, some of which are documented in

he following sections. 

http://goo.gl/j9yYYQ
http://goo.gl/xMU2Zf
http://www.citysecuritysummit.com/
http://www.uefa.org/protecting-the-game/security/
http://www.ecaeurope.com/news/essma-summit-2016/
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Fig. 1. Sample images forming the S-Hock dataset. On top left, the wider scene with the game field and the stands. In the blue, green and cyan frames are the high 

resolution spectator scenes; in the yellow frame is the low resolution spectator scene. On top right, a schematic representation of the annotation at the individual scale. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 2. Schematic representation of the data acquisition settings. The spectators 

were forced by the logistic of the ice-stadium to seat on the south bleachers (bot- 

tom in the map), while the north bleachers were restricted to organization. The red 

and blue cameras are full HD cameras with wide lens for the acquisition of the 

ice-rink and the whole spectator crowd, while the green ones are pointing specific 

areas of the spectators. See Fig. 1 for a sample image from each camera. (For inter- 

pretation of the references to color in this figure legend, the reader is referred to 

the web version of this article.) 
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Another crucial cue of S-Hock is that it has two main facets,

ne focused on the crowd, while the other is spent on the game

eld. In this sense, the dataset is multidimensional, where the two

imensions consist of data temporally synchronized. Each annota-

ion in the game field has a time stamp which follows that of the

rowd. This obviously enlarges the number of possible applications

hat could be carried out, investigating the reactions of the crowd

o the actions of the game, opening up to applications of summa-

ization, content analysis, retrieval, etc. In particular, as we shall

ee in the closing section, many new applications can be designed

or the domain of public entertainment. 

In this article we discuss issues related to low and high level

etail of the crowd analysis, namely, people detection and head

ose estimation for the low level analysis, spectator categorization

nd automatic highlights generation for the high level analysis.

pectator categorization is a kind of crowd segmentation, where

he goal is to cluster different groups of supporters and describe

hese groups with a set of features like the team they support or

he average excitement of the group. For all of these applications,

e define the experimental protocols, thereby promoting future

omparisons. From the experiments we conducted, we show how

tandard methods for crowd analysis, which work well on state-

f-the-art datasets, are not fully suited to the data we are dealing

ith, thus requiring us to face the problem from a different per-

pective. Therefore, besides baselines, we also propose customized

pproaches specifically targeted at the spectator crowd, thus defin-

ng new upper bounds. 

In brief, the main contributions of this paper are: 

• A novel dataset for spectator crowd, which describes at differ-

ent levels of detail the crowd behavior with millions of ground

truth annotations, synchronized with the game being played in

the field. Crowd and game are captured with different cameras,

ensuring multiple points of view; 
• A set of applicative tasks for analyzing the spectator crowd,

some of them are brand new; 
• A set of baselines for some of these tasks, with novel ap-

proaches which definitely overcome the standard crowd anal-

ysis algorithms. 

The rest of the paper is organized as follows: The details of the

ata collection and labeling are reported in Section 2 ; the tasks of

eople detection, head pose estimation, and spectator categoriza-

ion are introduced in Section 3 , focusing on contextualizing the
roblem, discussing the related state of the art (if any), present-

ng the considered baselines and our approaches, and discussing

he results obtained. Finally, in Section 4 , other applications worth

nvestigating are briefly discussed, promoting further research on

his new topic. 

. Data collection and annotation 

The 26th Winter Universiade was held in Trento (Italy) from 11

o 21 of December 2013, attracting about 10 0,0 0 0 people from all

ver the world, both among athletes and spectators. The data col-

ection campaign focused on the last 4 matches (those with more

pectators) of the men’s ice hockey tournament, held in the same

ce-stadium of Canazei: here we set up 5 cameras arranged in the

onfiguration showed in Fig. 2 . Two full HD cameras (1920 ×
080 pixels, 30 fps, focal length 4 mm) were employed: one was

ointed on the ice rink to record the match events (the red one in

ig. 2 ), and another one for a panoramic view of all the bleachers

the blue one in Fig. 2 ). Moreover, we used 3 HD cameras (1280 ×
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Table 1 

The annotations provided for each person and each frame of the videos. These are only typical values that each annotation can have, a 

detailed description of the annotations is provided with the dataset. The meaning of the head pose attributes will be explained later in 

the paper. For the experiments in Section 3.2 , away class has been further divided in far-left and far-right to discriminate the head pose 

even when a spectator is not looking toward the ice rink. 

Annotation Typical values 

People detection Full body bounding box [ x, y , width, height] 

Head detection Head bounding box [ x, y , width, height] 

Head pose Far left, left, frontal, right, far right, away, down 

Body position Sitting, standing, (locomotion) 

Posture Crossed arms, arms alongside body, elbows on legs, hands on hips, hands in pocket, hands on legs, 

joined hands, hands not visible, crossed legs, parallel legs, legs not visible 

Locomotion Walking, jumping (each jump), rising body slightly up 

Action / interaction Waving arms, pointing toward game, pointing outside game, rising arms, waving flag, hands a cone, whistling, 

positive gesture, negative gesture, applauding, clapping (each clap), using device, using binoculars, 

using megaphone, patting somebody, call for attention, hugging somebody, kissing somebody, passing object, 

hit for fun, hit for real, opening arms, hands to forehead, hitting hands (once), none 

Supported team The team supported in this game (according to the survey) 

Best action The most exciting action of the game (according to the survey) 

Social relation If he/she did know the person seated at his/her right (according to the survey) 
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1024 pixels, 30 fps, focal length 12 mm) focusing on different parts

of the spectator crowd (the green ones in Fig. 2 ). In total, about

30 h of recordings have been collected, with inter-camera synchro-

nization: this brought the interesting feature of having the crowd

synchronized with the game on the rink. 

After the match, we asked to the spectators to fill a simple

questionnaire with three questions (whose significance will be

made clear later in the paper): 

• Which team did you support in this match? 
• Did you know at the beginning of the match who was sitting

next to you? 
• Which has been the most exciting action in this game? 

On average 30% of the spectators filled the from, with peaks

of 80% of them during the final match on the central part of the

standings. 

In S-Hock we focus on game segments from different hockey

matches in order to stress the generalization capability of the con-

sidered algorithms, since in different matches we have different

people and illumination conditions. In particular, from each match

we selected a pool of sequences in order to represent a wide, uni-

form and representative spectrum of situations, e.g. tens of in-

stances of goals, shots on goal, saves, faults, timeouts (each se-

quence has more than one event). Each video is 31 s long (930

frames), for a total of 75 sequences, namely 15 for each camera.

The annotations reported in Table 1 have been performed on one

of the three close-field cameras, whereas the videos recorded with

the other two cameras were annotated only with the survey in-

formation. The fourth view is a wide-field view of the previous

three views and the fifth is oriented toward the ice rink in order

to record the game events. 

Each sequence has been annotated frame by frame, specta-

tor by spectator, by a first annotator, using the ViPER-GT format

( Doermann and Mihalcik, 20 0 0 ). 7 The annotator had to perform

three different macro tasks: detection (localizing the body and the

head), posture and action annotation, respectively. This amounted

to deal with a set of 50 labels, listed in Table 1 . 

From the whole set of possible features that can characterize

the human action and interaction, we selected the annotated el-

ementary forms of action ( McPhail, 1991 ) as they are strictly con-

nected with those more relevant for the analysis of social interac-

tion, and those most related to our specific setting, i.e. sport spec-

tator crowd (e.g. bodily posture or proxemics, and actions such
7 The toolkit is available at http://viper-toolkit.sourceforge.net/ . 

 

s waving arms or shaking “fan objects”). More specifically, we

onsidered the available microsociological literature on behavior

n public and social interaction ( Garfinkel, 1967; Goffman, 1961;

963; McPhail, 1991 ), with particular attention to non-verbal con-

uct (proxemics, bodily posture, gesture, etc.). We took into partic-

lar consideration also the literature on social interaction in large

atherings ( McPhail, 1991 ),that is, literature on what is commonly

eferred to as “crowd behavior”. In doing so, we focused in partic-

lar sport spectator gatherings ( Bassetti, 2016 ). 

On the other hand, the collected video recordings constituted

he database onto which microsociological analysis have been con-

ucted, prior to video annotation, in order to select what we

all the atomic components of action-in-interaction of the con-

idered setting – that is, the elementary actions to be anno-

ated on the dataset. The empirical analysis have been conducted

ccordingly to the principles and procedure of Ethnomethodol-

gy ( Garfinkel, 1967 ) and Conversation Analysis ( Psathas, 1995;

acks et al., 1995 ), the so-called EM/CA approach. Ethnomethod-

logical video-analysis (see Heath et al. (2010) ) plays particular at-

ention: to the sequentiality of interaction, which is regarded as an

nfolding process; to the perspective of the participants (what is

vailable to their knowledge and perception) at any point of such

 sequence, rather than the perspective of the human analyst who

nows what happens next; to the context of the interaction as si-

ultaneously constitutive of, and constituted by the actions people

erform in it. These characteristics make the approach particularly

ell-suited to be integrated into computer vision techniques. 

The EM/CA analysis of the video-set has identified in a first

hase two main activities enacted by sport spectators: 

• reading the field, that is, game-actions’ projection; 
• performing the stands, which entails both 

– doing [attending the game], that is, displaying attention to

the game (e.g., pointing to or looking at the game field), and

– doing [supporting the team], that is, actively cheering, dis-

playing support (e.g., standing, jumping, clapping) 

Consequently, the subsequent analytical phase was devoted to

dentifying markers of: 

• (dis)attention and (dis)engagement with the game-field activi-

ties; 
• game-actions projection, with consequent increase in atten-

tion/engagement (i.e. excitement); 
• enjoyment/annoyance and (dis)satisfaction with respect to, re-

spectively, game-actions and their outcomes; 

http://viper-toolkit.sourceforge.net/
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Table 2 

The game situations annotated for the 4 matches (considering only the second 

half of each game). Here the number of persons is an approximation of the num- 

ber of people during the entire video. The last row indicates the number of se- 

quences in which there is a specific game situation. 

Persons Goals Saves Shots Fouls Timeouts Play 

Match 1 500 2 21 43 2 – –

Match 2 250 3 16 23 5 1 –

Match 3 315 – 13 22 5 – –

Match 4 150 1 15 28 8 – –

# Seq. – 3 7 12 1 1 4 
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• mutual coordination in doing [attending the game], and in

doing [supporting the team] (that is, in displaying enjoy-

ment/annoyance and (dis)satisfaction with particular game-

actions or their outcomes. 

Each annotator had two weeks to annotate 930 frames, and was

sked to do it in a specific lab, in order to monitor him/her and

nsure a good annotation quality. After that all the sequences have

een processed, producing a total amount of more than 100 mil-

ion of annotations, a second round of annotations started, with the

second annotators” that were in charge of correcting the errors

rom the first-round annotation phase. The whole process involved

5 annotators, all paid for their work, and lasted almost 1 year. 

Together with this fully labeled reduced version of the dataset,

e also release the complete dataset (about 30 h of video stream)

ith high level annotations in terms of events happening on the

ce rink (e.g. goals, shots, saves, etc.). Statistics about the dataset

ontent are reported in Table 2 . All the data are available online

t http://vips.sci.univr.it/dataset/shock , and are free to use for re-

earch purposes. 

. Applications 

In this section we propose a number of applications for which

-Hock can represent a valuable resource in terms of algorithms’

esting and benchmarking. We will focus on two classical tasks

people detection and head pose estimation), and two more spe-

ific ones, related to social aspects (spectators categorization) and

ultimedia content generation (automatic summarization) respec-

ively. For each task, we briefly present the state-of-the-art, tak-

ng into account only those methods that can be applied to our

cenario, and some preliminary experiments conducted on our

ataset. We also propose some improvements of the standard

ethods that exploit the specific features of a spectator crowd and

he relationship between the crowd behavior and what is happen-

ng in the game. 

.1. People detection 

People detection is a long running problem in the computer vi-

ion community where a number of different methods and algo-

ithms have been presented over the last 30 years ( Dollár et al.,

009; Enzweiler and Gavrila, 2009 ). While many different ap-

roaches are available in the literature, such as wavelet-based

daBoost cascade, NN/LRF and combined shape-texture detection,

he most popular approaches in the recent years are classification

chemes based on HOG features ( Dalal and Triggs, 2005 ) and the

eformable Part Model (DPM) ( Felzenszwalb et al., 2010 ). 

Unfortunately, most of the state-of-the-art methods are not

uitable for our scenario in their original version. This is mostly

ue to two reasons: first, images are extremely low resoluted – the

ounding box of a person is on average 70 × 110 pixels –, and

econd, there are many occlusions – usually only the upper body

s visible, rarely the entire body but sometimes only the face. 
Mainly to overcome these problems, some recent works stud-

ed how to embed an explicit model of the visual scene into

he detection algorithms. Barinova et al. (2012) proposed to use

ough transform as an alternative to the non-maxima suppression

tage, allowing them to handle multiple instances of the same ob-

ect class in a very dense scenario. San Biagio et al. (2013) pro-

osed a new image descriptor, called HASC, that encodes linear

nd nonlinear relationships between heterogeneous dense feature

aps through information-theoretic measures; this makes it able

o treat complex structural information in a compact and robust

ay. On the other hand, in order to overcome the occlusions is-

ue, Wu and Nevatia (2007) proposed to use part detectors learned

y boosting a number of weak classifiers based on edgelet fea-

ures, and then to combine the responses of part detectors to form

 joint likelihood model including the analysis of possible occlu-

ions. Eichner et al. (2012) fused DPM ( Felzenszwalb et al., 2010 )

nd Viola and Jones (2001) detectors to identify upper bodies, i.e.

eople standing (or seated) upright and seen from the front or the

ack (yet not from the side). Finally, Rodriguez et al. (2011) pro-

osed to resolve all detections jointly by optimizing a joint energy

unction that combines crowd density estimation and the localiza-

ion of individual people. 

In this article we provide 5 different baselines for people de-

ection, 2 classic approaches and 3 state-of-the-art methods. Both

lassic approaches are based on linear SVM classifiers and differ

rom each other only in terms of the descriptor used; the first

s based on Histograms of Oriented Gradients (HOG) ( Dalal and

riggs, 2005 ) (cell size of 8 × 8 pixels) and is dubbed in the fol-

owing HOG+SVM , while the second is the Heterogeneous Auto-

imilarities of Characteristics (HASC) descriptor ( San Biagio et al.,

013 ) and is dubbed in the following HASC+SVM . As for the state-

f-the-art methods, we tested: the Aggregate Channel Features

 ACF ) detector ( Dollár et al., 2014 ), which works on the color chan-

els by computing integral images and Haar wavelets inside a

 Viola and Jones, 2001 ) framework, fusing them together; the De-

ormable Part Model ( DPM ) ( Felzenszwalb et al., 2010 ), that feeds a

atent SVM classifier with a combination of templates representing

arts of the whole object to be arranged in a deformable configu-

ation; and the Calvin Upper Body Detector ( CUBD ) ( Eichner et al.,

012 ), a combination of the DPM framework trained on near-

rontal upper-bodies and the Viola-Jones face detector. 

To further investigate the specificity of the S-Hock dataset, we

ropose to use, on top of all these methods, a strong prior infor-

ation, i.e. the people are “forced” by the environment to arrange

n a grid – the seats on the bleachers. Thus, assuming people are

ctually seated or anyway distributed according to seats (e.g. some

eople is standing most of the time in front of a seat where they

ut their belongings), we can generate a prior probability map by

ssigning a higher probability to the locations next to the seats.

ince we do not know in advance the camera calibration (i.e. the

elative orientation between the camera and the stands), we prefer

o adopt a post-processing strategy where we add to the detec-

ion confidence map the average of the map over the rows and the

olumns; in this way we only assume that the camera is roughly

erpendicular to the spectators, which is reasonable since the cam-

ra is quite far from the stands, but the method is very robust to

mall movements of the camera that can result in a translation of

ixels. Consider D the detection confidence map, being D ( x, y ) the

robability that the patch centered in ( x, y ) contains a person, the

odified output ˜ D for a target location ( ̂  x , ̂  y ) is given by: 

˜ 
 ( ̂  x , ̂  y ) = D ( ̂  x , ̂  y ) + 

∑ 

i 

D (x i , ̂  y ) + 

∑ 

j 

D ( ̂  x , y j ) (1)

We adopted a standard experimental protocol based on train-

ng, validation and testing. We used all the 11 sequences of the fi-

al match as testing set, while 2 sequences of the same semi-final

http://vips.sci.univr.it/dataset/shock
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Fig. 3. Qualitative results of the people detection algorithms. The detection confidence map for each method is reported both with and without the application of the 

grid-arrangement prior. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 3 

People detection results in terms of precision, recall and F 1 score, with and without the contribution of the grid arrangement prior. 

Best performances reported in bold. 

Method No prior With prior 

Prec. Rec. F 1 Prec. Rec. F 1 

HOG + SVM 0 .743 0 .561 0 .639 0 .662 0 .709 0 .684 

HASC + SVM ( San Biagio et al., 2013 ) 0 .365 0 .642 0 .465 0 .357 0 .685 0 .469 

ACF ( Dollár et al., 2014 ) 0 .491 0 .622 0 .548 0 .524 0 .649 0 .580 

DPM ( Felzenszwalb et al., 2010 ) 0 .502 0 .429 0 .463 0 .423 0 .618 0 .502 

CUBD ( Eichner et al., 2012 ) 0 .840 0 .303 0 .4 4 4 0 .613 0 .553 0 .581 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Classification accuracy for state-of-the-art methods averaged on the five classes 

and the computation time. The time used to refine the prediction through EACH 

is negligible comparing to the one used to train and test the neural network. The 

testing and training reported in the table, is considering the whole amount of 

seconds used to process the entire set of images on our non-GPU powered desktop 

machine. 

Method Avg. accuracy Training time Testing time 

[sec] [sec] 

Orozco et al. (2009) 0.368 105,303 6263 

WArCo ( Tosato et al., 2013 ) 0.376 186,888 87,557 

CNN 0.346 16,106 68 

AE 0.348 9384 3 

CNN + EACH 0.354 16,106 68 

AE + EACH 0.363 9384 3 
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n  

(  
match have been used as training set, and the last 2 sequences

(of 2 different matches) as validation set to tune some parame-

ters (specifically threshold for the minimum detection score and

the parameters for the non-maxima suppression stage). For the

training phase, we randomly selected 10 0 0 individuals to be used

as positives, while a background image (i.e. an image of empty

bleachers) has been used to randomly generate negatives For the

testing phase, we downsampled the videos by processing 1 frame

every 10, resulting in 93 frames and about 13,600 individuals per

video (about 10 0 0 frames and 150,0 0 0 individuals in total). For

HOG+SVM and HASC+SVM we adopted a simple sliding window

strategy for the generation of the candidates. We used patches of

fixed size of 72 × 112px and a movement step of 8px, generat-

ing a detection confidence map with dimension 160 × 118. As

for ACF, DPM and CUBD, the generation of the candidates is part of

the algorithms. 

Following the evaluation protocol of Everingham et al. (2010) ,

we consider an individual as correctly identified if the intersec-

tion over union of the predicted and annotated bounding boxes is

higher than 50%. As performance measures we use precision, recall

and F 1 scores. 

Qualitative results of the baselines and the grid arrangement

prior contribution is shown in Fig. 3 , while quantitative results

are in Table 3 . Surprisingly, the best performing method is also

the simplest one (HOG+SVM), while the frameworks based on de-

formable part models (DPM and CUBD) perform very poorly in the

standard version. The main reason we find is that the extremely

low resolution of the images make the detection of the parts even

more difficult than the detection of the person as a whole. Numeric

results also prove that the grid arrangement prior consistently im-

proves the performances of all the methods in terms of F 1 score. 

3.2. Head pose estimation 

The scenario described by S-Hock can be generalized in most of

the visual surveillance environments where cameras are deployed

in a big public area in order to maximize the coverage. In these

contexts, one interesting task is the analysis of the posture of each

individual with the goal of tracking their focus of attention along

time. In this section we focus on the automatic pose estimation of

the head. In this context, despite the good resolution of the cam-

eras, the distance between the camera and the filmed subjects is

rather high, which is necessary in order to cover the whole side
f the gallery in the ice stadium. In our particular case, the ap-

earance of each spectator’s head can be contained in a bound-

ng box of rather small dimensions ( 50 × 40 pixels on average). In

his scenario, most of the traditional and best performing meth-

ds ( Chen et al., 2012; Kemelmacher-Shlizerman and Basri, 2011;

hu and Ramanan, 2012 ) are inapplicable due to the impossibil-

ty in finding landmark points on each subject’s face. Considering

he low-resolution scenario, viable methods are few. Among them,

e selected two algorithms which are suitable for such an appli-

ation. The first has been proposed by Orozco et al. (2009) , it re-

ies on the computation of a descriptor based on the distance be-

ween the test image and the mean image for each orientation.

n SVM classifier has been used to perform the final decision. The

econd viable approach has been proposed by Tosato et al. (2013) ,

n this work the authors exploit an array of covariance matrices in

 boosting framework. The image of the head has been divided in

atches which have been weighted according to their description

apability. The application of those methods on S-Hock lead to per-

ormance similar to their application to other dataset. However, a

onsiderable amount of time is needed for testing and much more

or training the model (see Table 4 ). In order to overcome these is-

ues we propose two approaches based on neural networks, which

ave recently produced state of art results in many computer vi-

ion branches ( Girshick, 2015; Kontschieder et al., 2015; Szegedy

t al., 2015 ). 

In this work we compare the performance of two architectures:

amely, Convolutional Neural Networks (CNN) and Auto-encoders

AE). The input image has been resized 50 × 50 pixels and then
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Fig. 4. (a) Architecture of CNN. (b) AE architecture: in cyan are pictured the interconnections between the auto-encoder that must be trained separately, in red instead there 

are the interconnections of the final NN. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Examples of the five head poses considered for the experiments in 

Section 3.2 ; in order (a) to (e): far left, left, frontal, right, far right . 
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ormalized in order to be given as input to the two networks. The

NN model is a deep architecture similar to the one proposed by

eCun for handwritten digit recognition ( LeCun et al., 1989 ): an

nput layer followed by 2 sets of convolution-pooling layers (see

ig. 4 (a)). Both kernels in the convolutional layers are 5 × 5 pix-

ls, the scaling factor of the pooling layer is 2, and the training

as been performed over 50 epochs. The AE net is showed in

ig. 4 (b) and is performed in two phases. In the first unsuper-

ised phase the weights are learned automatically, in the second

hase those weights will be used as initialization of a supervised

raditional neural network that will output the final inference on

he five classes. In this architecture the only hidden layer has size

 = 200 . Both training procedures (supervised and unsupervised)

re refined in 100 epochs. 

This task consists in classifying different head poses consider-

ng the following partition: frontal, left, right, far left and far right .

hese classes allow us to segment three zones of the ice rink and

wo situations in which the spectator’s attention is addressed out-

ide of it. The classes down and away have been ignored since t

ey are not populated as much as the others. In a more quantita-

ive fashion, frontal faces are considered roughly in the range be-

ween −10 ◦ and 10 °, left and right spans from −10 ◦ to −80 ◦ and

0 ° to 80 ° respectively. The heads exceeding those angles in both

irections are considered as far left and far right (see Fig. 5 ). This

as been detailed to the annotators during the data labeling. The

esulting dataset is then is composed by 107,299 and 34,949 im-

ges for training and test respectively. 8 The head location is feeded

o the neural network using the ground truth position in order to

erive a sort of upper bound in terms of performance. 

The results proposed in Table 4 show that neural networks

re giving results similar to the baselines, but the training and

specially the testing phases are performed much faster in the
8 The sets are provided along with the dataset in order to ease future compar- 

sons. 

 

t  

p  
roposed methods. Also consider that these tests have been per-

ormed on the same machine without the use of any GPU that

ould consistently improve the training speed. This speed up in

lassification time for both training and testing phases makes our

ethod more suitable for real life applications where quick re-

ponse and imminent decision are required. As a further remark,

e trained WArCo by randomly sampling 50 0 0 samples among all

hose available for training; this has been necessary in order to

erform it in a reasonable amount of time. 

A further experiment has been performed on this data scenario;

he main intuition at its basis stems from the fact that people at-

ention during a sport match is mainly given by the location of the

ction on the game field. For this reason we introduced an addi-

ional step named EACH (Event Attention CatcH). In this experi-

ent the position of the puck on the ice has been modeled as a

ne dimensional Gaussian distribution centered on the puck itself.

his model allow us to have a rough estimation of the area that is

ikely to attract spectators’ attention. This information is used as a

rior probability in order to refine the final head pose estimation.

his probability P (c) 
A 

is formalized in Eq. (2) 

 

(c) 
A 

= 

U (c) ∑ 

i = L (c) 

1 

σ
√ 

2 π
e −

(x i −m (c) ) 

2 σ (2) 

here L ( c ) and U 

( c ) are the lower and the upper boundaries of the

ink for the specific class c respectively, m 

( c ) is the position of the

uck. 

 = arg max 
c 

(αP (c) 
A 

+ (1 − α) P (c) 
N 

) (3)

The final decision is taken according to Eq. (3) , where α is a

eighting parameter, P (c) 
N 

is the probability of the head pose to be

ssigned to class c computed by the Neural Network. 

We observe that this model is much more beneficial when

thletes are playing than when the game is paused by the ref-

ree’s intervention. This particular aspect suggests us to tune the

parameter according to the game phase. The results reported in

able 4 are computed using σ = 15 and α = 0 . 3 . The ice rink infor-

ation increases the accuracy by approximately 2% on both CNN

nd AE frameworks. 

.3. Spectator categorization 

The spectator categorization task consists in spatially segmenting

he spectator crowd on the basis of motion attributes and tem-

oral regularization, and in associating to each segment a set of
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high level features. In this paper we propose two different high

level features: the supported team, based on the fact that the ma-

jority of people in that segment support that particular team, and

the average excitement level over the whole sequence. Notice that

these are just two possible features, other ones can be proposed

and implemented in order to characterize the segment. Moreover,

whereas some features are strongly related to the specific scenario

at hand, others are of general applicability. For instance, the sup-

ported team is meaningless if we analyze the spectator crowd at a

music concert, while the excitement level is still relevant. 

Spectator categorization is a subtask of the more gen-

eral topic of crowd modeling and crowd behavior analy-

sis, and in turn very connected to human activity analy-

sis ( Aggarwal and Ryoo, 2011; Gowsikhaa et al., 2014; Poppe, 2010 ).

Jacques Júnior et al. (2010) stated that computer vision approaches

for the behavioral analysis of crowds can be distinguished into two

main typologies: the object-based approaches treat the crowd as

a collection of persons and thus the analysis relies on the detec-

tion of individuals; while the holistic approaches treat the crowd as

a single complex entity. Despite the sociologically-founded prefer-

ence for conceptualizing crowds, from a theoretical point of view,

as collections of individuals and groups rather than a single en-

tity (or “mind”), from a technical point of view the choice be-

tween the two approaches depends on the specific scenario un-

der analysis; in dense scenes, where it is very difficult to detect

and track individuals, the holistic approach is more appropriate

(see Jacques Júnior et al., 2010 , p. 72). This is also the case of spec-

tator crowds, where other than dense, the scene also presents a

huge number of occlusions. 

Holistic approaches usually collect global information about the

crowd (e.g. crowd flows), ignoring local information (e.g. people

detection and tracking). This is typically achieved by means of op-

tical flow techniques. 

In Ali and Shah (2007) , the authors propose to use Lagrangian

particle dynamics to segment the flows of a crowd; in this work

the notion of a flow segment is equivalent to a group of peo-

ple that perform a coherent motion. The motion of the crowd is

captured by optical flow and a velocity field is generated; subse-

quently, particles are inserted into the velocity field by means of

a numerical integration method, and their movements are used to

construct a flow that reveals coherent structures. We will refer to

this method with LPD . 

Mehran et al. (2010) proposed to apply streakline representa-

tion of flow to a number of computer vision problems, and in par-

ticular they focus on crowd analysis. They use streaklines to trans-

port information about a scene by repeatedly initializing a fixed

grid of particles at each frame, then moving both current and past

particles according to the optical flow results; this leads to a very

accurate representation of the flow that allows to detect both spa-

tial and temporal changes. Finally, streaklines are passed to a wa-

tershed segmentation scheme to cluster regions characterized by

coherent motion. We will refer to this method with Streaklines . 

As a third method, we consider the one proposed by

Conigliaro et al. (2013a ), that combines instantaneous segmenta-

tion based on motion features and temporal regularization. The

image is divided into a set of overlapping patches, each one de-

scribed by a 5-dim feature vector containing the position of the

patch’s centroid, the average intensity of the optical flow and the

entropy of flow intensity and directions. Gaussian clustering with

automatic model selection ( Figueiredo and Jain, 2002 ) is used to

compute the instantaneous segmentation of the scene. Hierarchi-

cal clustering is then exploited to group together patches that, over

all the frames, consistently belong to the same instantaneous seg-

ments. This is achieved by the Patch Similarity History matrix. We

will refer to this method with PSH . 
E  
To ensure a fair comparison, we defined a shared test proto-

ol. We subdivided the scene into a set of patches (size 64 ×
28 px) forming a regular grid with 50% of overlap. To generate

round truth, each patch is associated to the individual’s bounding

ox with the highest overlapping area (if any); than each patch

s labeled based on the team the associated individual supports.

he rationale behind this is we want to segment different support-

rs groups, and we observed that, especially in concomitance with

ome context-specific events (e.g. a goal, a good save, a foul), sup-

orters of the same team behave very similarly, and instead very

ifferently than the supporters of the opposite team. Each method

as tested using the standard settings provided by the authors of

he original papers. To speed up the process and make the optical

ow computation more robust, for our experiments we downsam-

led the original videos taking into account 1 frame every 10. 

Fig. 6 shows both qualitative and quantitative results. The best

erforming algorithm is PSH, with a clustering accuracy of about

2%. This let us think that the personal behavior is well described

y the motion flow features, and in particular by the flow entropy

omputed over both intensity and directionality. This consideration

ives us a good starting point for the extraction of other high level

eatures, such as the excitement level of each segment end of the

rowd as a whole. 

Once the crowd is segmented, it is possible to proceed with

igher level analysis. As already showed in Conigliaro et al.

2013a,b) , it is possible to estimate the excitement level either of

 single segment or of the entire crowd by using motion flow fea-

ures. This kind of analysis can be very beneficial for many applica-

ive fields like marketing (e.g. to automatically detect the best mo-

ents to run advertisements), security (e.g. a very excited crowd is

ore likely to start a brawl), entertainment (e.g. crowd excitement

an be related with the quality of the proposed show), etc. 

Navarathna et al. (2014) proposed to use a motion history image

o represent the long-time behavior of a single individual; then,

he global behavior of the crowd is represented as the entropy of

 matrix, that accounts for the pair-wise similarity among all the

ingle behaviors. This approach seems to work very well in the

esting environment, but it appears to be sensitive to the crowd

ize, since the dimension of the similarity matrix is quadratic with

he number of people. 

For this reason, we present in this paper a holistic method

hich is independent from the crowd dimension. The excitement

alculation process relies on three motion flow features: the av-

rage flow intensity, and the entropy of flow in terms of intensity

nd directions. Given a generic patch k , the flow intensity I ( k ) is the

verage of the flow intensity of each pixel in the patch; intuitively,

his cue encodes how much movement characterizes the patch k .

he last two features are based on the definition of entropy of a

uantized physical quantity inside the patch k , given by: 

(k ) = −
d ∑ 

i =1 

p(k i ) · log p(k i ) (4)

here d is the total number of possible values assumed by the

hysical quantity, and p ( k i ) is the realization probability of the spe-

ific value i . In this analysis we are interested in the entropy of

ow directions E D and flow intensity E I . Broadly speaking, E D de-

cribes the kind of movement in the patch: high entropy values

ean random directions, while low values address homogeneous

ovements in the patch (a similar use of this entropic descriptor

as been exploited in Cristani et al. (2012) ). 

After that, considering each segment r computed as explained

bove, a local level of excitement is estimated by computing the

alue: 

xc(r) = 

I(r) × E D (r) 

E I ( r) 2 
(5)
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Fig. 6. Spectator crowd segmentation: qualitative and quantitative results. The violet and yellow areas represent the two segments, corresponding with supporters of the 

different teams. A third segment is ignored in this pictures since it is all the rest of the image and it represents the background. (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Spectator segmentation and excitement level on two videos from two different matches. Image A shows the spectator crowd during a goal event, while during the 

game-play captured by image B, there are no salient events happening. The respective color-bars on the right of the images indicate the excitement level. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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ver a short time interval (in the order of few seconds). In this

quation I ( r ), E I ( r ) and E D ( r ) are the average over all the patches

elonging to the segment. The idea behind this equation is that

e consider as a high level of excitement for a group of people an

ntense movement (high I ( r )), with diverse directions (high E D ( r )),

omputed in a coordinated fashion for all people belonging to that

egion (low E I ). Finally, we can compute the average of Exc ( r ) over

ime to globally characterize the segment. 

.4. Automatic summarization 

Following the direction drawn in the spectator categorization

ask, we present an application that has the main goal to detect

vents taking place in the game-field, that globally trigger the ex-

itement of the spectator crowd. This is the starting point for auto-

atic video summarization, since we assume that events that gen-

rates reactions in the spectator crowd are the ones that people

t home would be interested to see. Thus, the spectator feedback,

utomatically recognized, helps in highlighting exciting or crucial

vents that should be included in a video summarization of the

how. 

The highlights detection method is based on the same flow fea-

ures used for the excitement estimation (i.e. I, E D and E I ), and

he excitement level computed as in Eq. (5) . All these features are

omputed separately for each frame and for each crowd segment.

eplicating this process for all frames gives a 4D signal which can

e quantized in an unsupervised fashion by Mean Shift. In this

ase we preferred to use mean shift instead of Gaussian clustering,

ecause pooling together the signal values of an entire sequence

eads to highly irregular distributions, that are better handled by

on-parametric algorithms. 
After the quantization, looking at the mean values of each ob-

ained cluster may serve to get insight on the kind of event being

odeled and happening on the game-field. For example, clusters

ith high excitement may be originated by an interesting event

appened in the game that should be highlighted ( Fig. 7 ). 

We conducted the experiments for highlights detection on the

ntire duration of a game period to identify the salient moments

or the audience. All the videos are analyzed by considering a time

indow of 10 s with 5 s of overlap. The bandwidth parameter of

ean shift was obtained experimentally, and is the same for each

est. Depending on the choice of bandwidth, different actions of

he game can be detected, such as goals or shots and saves. 

In Fig. 8 we present the qualitative result of a full game pe-

iod during the final match of the competition, which is Canada

gainst Kazakhstan. During this game period, the Canadian players

cored two goals. The upper box in the image shows the spectator

ategorization results both in terms of global (i.e. averaged over

ime) and instantaneous excitement level. Here the colored regions

n the image represent two different groups of supporters, one for

ach team. The most excited region is the red one (Canadian sup-

orters), with an average excitement level of 0.47, instead the light-

lue region (Kazakhstani supporters) shows an average excitement

evel of 0.23. The two plots R1 and R2 show the temporal evolu-

ion of the excitement level respectively of Kazakhstani (R1) and

anadian (R2) supporters. From this spectator categorization, we

dentify three events that globally triggered the excitement of the

pectator crowd (lower part of Fig. 8 ). Two of them correspond to

he goals scored by the Canadian team, respectively at time 8:17

nd 22:43. But the interesting thing is the detection of an event

t time 2:16, which correspond to a shot on goal by a Canadian

layer that was alone in front of the goaltender: this was a great
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Fig. 8. Spectator categorization and highlights detection of a full game period 

(about 32 min). The picture in the upper box shows the spectator categorization 

results of the full video, where R1 and R2 represent the two segments related to 

supporters of different teams. The color associated to each segment indicates its 

average excitement ( i.e. the average over all the individuals and the time span). 

Below, the temporal evolution of the excitement level for both the segments are re- 

ported. The lower box reports highlights detection results by means of mean shift 

approach: the yellow boxes represent salient events. (For interpretation of the ref- 

erences to color in this figure legend, the reader is referred to the web version of 

this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9. Examples of relative head poses and associated scores of the weighting func- 

tion (6) . 

Fig. 10. Qualitative results of the group detection baseline. True positives (green) 

are pair of individuals that are predicted as a group and claimed in the survey they 

actually are; true negatives (yellow) are pairs of individuals that claimed they do 

not know each other and predicted as no-group; false positives (red) are unrelated 

persons predicted as groups; and false negatives (blue) vice-versa. (For interpreta- 

tion of the references to color in this figure legend, the reader is referred to the 

web version of this article.) 
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opportunity to score for the Canadian team. Furthermore, the plot

R2 shows that this shot on goal, was the most exciting moment

for the Canadian supporters. To be noticed also that R1 plot shows

peaks in correspondence with salient events detected for the Cana-

dian supporters (R2), but the evolution of the excitement level is

completely different for the two groups. 

3.5. Group detection 

In the recent years, many different works about automatic de-

tection of groups of interacting people has been presented ( Choi

et al., 2014; Cristani et al., 2011; Hung and Kröse, 2011; Setti et al.,

2013a; 2013b; 2015; Tran et al., 2013; Vascon et al., 2016 ). Un-

fortunately, most of the state of the art methods rely on the so-

ciological concept of F-formation ( Kendon, 1988 ), which defines a

group as the spatial co-presence of two or more individuals, shar-

ing common spaces with specific functions. In the case of spectator

crowds, this spatial arrangement is strictly forced by the configura-

tion of the standings and the ice-rink, thus enforcing specific peo-

ple position and orientation, unrelated to their social behavior. For

this reason, the state of the art methods for group detection are

not applicable to our scenario. 

To overcome the limitations given by the structural constraints,

we present here a baseline method that relies on a set of heuristic

rules based on the observation of human behavior in our dataset. 

The general idea behind the baseline is that two persons, when

they are interacting, tend to stay close and look at each other, in-

dependently from what is happening around them. Following this

intuition, we compute an interaction score that is the average over

all the frames of a weighting function that accounts for the view

frustum intersection of two individuals. Broadly speaking, the in-
eraction between two persons is more likely to occur when they

ook at each other, while it is unlikely to occur when they look in

pposite directions. Mathematically, the interaction score for indi-

iduals p l and p r is defined from: 

(p l , p r ) = 

1 

T 

T ∑ 

t=1 

w (θl (t) , θr (t)) (6)

here p l and p r are two individuals seated next to each other re-

pectively on the left and right side (on the image plane), T is the

otal number of frames, t is the current frame under analysis, θ x ( t )

s the head orientation of p x , x ∈ [ l, r ], at time t with the conven-

ions presented in Section 3.2 where we only consider 4 classes

A = away, L = left, F = front, and R = right), and w ( ·, ·) is a weighting

unction defined by the following look-up table: 

Fig. 9 shows some examples of relative head orientations and

he corresponding output of the weighting function. 

Experimentally, we estimated the head orientation by means

f the CNN algorithm presented in Section 3.2 . The network has

een re-trained with 4 classes defined as follows: classes left and

ight contain all the orientations towards the specified direction

i.e. considering both left and far left as well as right and far right ),

lass front accounts for all the people looking in the middle of the

ce-rink, while class away contains all the other cases (e.g. people

ooking down, at the phone, behind, etc.) 

Fig. 10 reports qualitative results of the group detection base-

ine described above, while quantitative results are in Table 5 . 
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Table 5 

Quantitative results for group detection baseline. 

Precision Recall F 1 Accuracy 

baseline 0 .62 0 .89 0 .73 0 .67 
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. Conclusions 

Based on the proposed, sociologically-founded taxonomy of

rowds ( Section 1 ), which represents a first contribution of the ar-

icle, we tackled the issue of spectator crowd modeling, which is

rand-new in computer vision, and which presents specific chal-

enges. To this aim, we created a novel dataset, S-Hock , which the

aper has illustrated with the purpose of showing its usefulness

or testing many, diverse, and in some cases brand-new applica-

ions. 

In particular, in the article we have focused on some low-level,

raditional tasks –people detection and head pose estimation– and

hree novel, high-level challenges –spectator categorization, au-

omatic summarization and group detection. In fact, on the one

and, we intended to underline the impact that considering the

pectator crowd scenario has on the domain of extant crowd anal-

sis algorithms, whereas, on the other hand, we wanted to offer a

oretaste, so to speak, of the numerous novel challenges that such

 scenario poses. 

Alongside those considered in the article, indeed, there are

any other challenges that remain open, and we deem S-Hock

s a very good starting point to address them. When considering

pectator crowds, for instance, capturing groups of people whose

embers hold pre-existing relationships (e.g. a family, a group of

riends) is certainly a hard task for the classical approaches of

roup estimation, since they are usually based on proxemics prin-

iples, which are not usable when people occupy fixed positions.

imilarly, capturing actions such as pointing or clapping hands is

ifficult due to the large dimension of the crowd and the dense

istribution of the spectators – yet these are crucial actions to un-

erstand crowd dynamics in the considered scenarios. 

S-Hock is a richer crowd dataset than all other state-of-the-

rt ones, given that the latter usually annotate (or estimate, as

n Zhou et al. (2012) ) people’s position only, do not encompass

round truth obtained from the crowd members, and hence are

iable only for tasks such as counting, tracking and event detec-

ion, as in Zhou et al. (2014) . On the contrary, we are confident

hat S-Hock may trigger the design of novel and effective ap-

roaches for the analysis of human action and interaction in pub-

ic, crowded settings. Interesting, brand-new applications that can

e developed starting from S-Hock , for example, are the following:

ttention level calculation, that is, detecting peaks of attention in

he crowd or in some of its segments; collective action detection

nd forecasting, which is particularly intriguing in the considered

ontext since people’s actions are intertwined both reciprocally –

eing different if a person knows his/her neighbors or if they are

trangers– and with the game actions on the field –how do peo-

le react when the team they support scores a goal or loses the

ame?. Other challenges are still to be thought. While we wish S-

ock would be a stimulus to such a future endeavor, we would

ike to close by underlining that our own endeavor would have not

een possible if not through interdisciplinarity. 
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