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Fig. 2. Detection results obtained on 7 images of the RepTile dataset and final templates generated by the algorithm. The seeds are highlighted with a black
and white circle. The label of each image represents the ratio: predicted/GT counts.



1051-8215 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCSVT.2017.2656718, IEEE
Transactions on Circuits and Systems for Video Technology

7

Method Detection Counting
prec. rec. F1 MAE NMAE

Cai and Baciu [17] 0.478 0.473 0.396 59 1.034
Arteta et al. [16] - - - 50 1.629

TM 0.860 0.776 0.805 18 0.186
TM + CE 0.909 0.790 0.835 18 0.164
Proposed 0.915 0.839 0.870 14 0.109

TABLE I
DETECTION AND COUNTING RESULTS ON REPTILE DATASET. COMPLETE

FRAMEWORK (PROPOSED), TEMPLATE MATCHING ONLY (TM) AND
TEMPLATE MATCHING WITH COMPONENT EXTRACTION (TM+CE), AND

STATE-OF-THE-ART METHODS.

is obtained by normalizing the MAE with the objects count
for each image. In both these cases, less is better.

Quantitative results on RepTile data are presented in Ta-
ble I. The third row shows the results obtained with template
matching only (Algorithm 5), where the input transformation
matrices G are identity matrices and each patch belongs to a
different component. Thus, each patch is the template used
in the matching phase, without applying any transformation.
Augmenting this with the components extraction step (Algo-
rithm 3) allows to take into account different object types, gen-
erating fewer templates to search in the image. This reduces
the number of false positives, resulting in a higher precision of
about 5%. Adding the congealing phase (Algorithm 4) allows
to obtain a better definition of templates by taking into account
the patches’ deformations; this increases the number of correct
detections, resulting in a higher recall of about 5%.

We also tested the proposed method on two public datasets
particularly suited for the object counting task. The first one
is Cells dataset [16], which contains 200 synthetic images of
cells, while the second is S-Hock dataset [37], that includes
the counting of people in the crowd.

For the Cells data, we tested all the 200 images separately.
The experimental protocol adopted in [16] requires that a
few images are used for the training (labeling them in their
entirety), focusing on the remaining ones as testing set. This is
not required by our approach, that instead wants to minimize
the user support. We started the analysis of each image with
the same random selection of 5% of cells in the image as initial
seeds. The starting bounding box of each seed is a square box
with size equals to 3 times the radius of the cell and centered in
the center of the cell itself. Please note that the testing protocol
is very different from the one used in [16], where they used
N training images and 100 testing images with 3 repeated
iterations to ameliorate the results (injecting false positive as
negative training sample); with this testing protocol the results
are about 10 times better then the one reported in this paper,
but this is a definitely different task and it is not the problem
addressed in this paper.

For the S-Hock dataset, we selected 100 random frames
from the videos and for each image we extracted a random
selection of 5% of people as initial seeds. In this case the
starting bounding boxes are the ground truth annotation of
each frame. All the methods were compared using the same
patches as input for each image.

Table II reports counting results on Cells data [16] and
S-Hock data [37]. The method presented by Cai and Baciu

Method Cells data S-Hock data
MAE NMAE MAE NMAE

Cai & Baciu [17] 149 0.809 117 0.779
Arteta et al. [16] 45 0.332 31 0.208

Proposed 40 0.233 7 0.048

TABLE II
COUNTING RESULTS ON CELLS [16] AND S-HOCK [37] DATASETS.

Method RepTile Cells data S-Hock data
Cai & Baciu [17] 2814 753 3655
Arteta et al. [16] 685 184 1067

Proposed 867 272 1265

TABLE III
AVERAGE EXECUTION TIME (IN SECONDS) FOR ALL THE METHODS AND

DATASETS. IMPLEMENTATIONS OF CAI & BACIU [17] AND THE PROPOSED
METHODS ARE PRODUCED BY THE AUTHORS, WHILE ARTETA et al. [16] IS
OUR IMPLEMENTATION STRICTLY FOLLOWING THE PAPER’S ALGORITHM.

has worst performance because images in both datasets are
unstructured, while the Arteta’s method performs pretty well
on its own data, but experienced problems with S-Hock data,
probably due to the high appearance variability of faces in
the crowd. In both cases our method outperforms the state-of-
the-art of more than 10% in MAE and NMAE. In the case
we decide to select few training patches on a single image,
and apply our approach starting from these patches on other
images, we avoid the overfitting, and the results drop down of
only 10% in terms of MAE on both Cell and S-Hock data.

We also present a comparison of the execution times for the
different methods and datasets (Fig. III). In our tests we used
a non optimized Matlab implementation on a standard laptop
with Intel i7 CPU and 8GB of RAM. The proposed method
is very close to the best performing one ( [16]), in particular
when the number of objects is limited (RepTile and S-Hock
data).

Fig. 3 shows qualitative results on a very challenging
image in RepTile dataset. Comparing images D and E, one
can appreciate how the component extraction phase hepls in
reducing the number of false positives (e.g. the detection on
top-left corner of D). In E, the templates generated after
clustering the different components are fewer than in D and
they average the appearance of many patches, making the
matching phase less sensitive to noise. Still, template match-
ing cannot handle the different geometry appearance of the
entities, e.g. fishes of different sizes with respect to the initial
seeds will not be properly detected. We overcome this problem
by aligning the patches belonging to the same component
with the congealing step (image F), resulting in an increment
of correct detections and, thus, of the recall rate. Images B
and C report results with state-of-the-art methods. In B, Cai
and Baciu [17] also consider a congealing phase but they do
not impose deformation constraints, leading some patches to
degenerate deformations. Furthermore, they are not able to
manage multiple texton templates, bringing to detection of one
single species at a time. Image C shows the density estimation
with the interactive framework of Arteta et al. [16]. Such a
method does not provide proper detections, but it estimates the
number of objects based on the density in specific regions.
In our experiments the final estimator cannot be adequately
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Fig. 3. Qualitative results of our experiments. The green rectangle in image A highlights the area where the images B-F are focused.

learned due to the low number of training samples.
More qualitative results are shown in Fig. 2, where detec-

tions and generated templates are reported. As for the number
of components automatically found, in some cases they are
intuitive – as the kind of animals in A and bacteria in B,
or the head orientation in C –, while in other cases the
components capture small variations on the visual appearance
of the objects, supposedly partitioning the visual intraclass
variance in separate smaller groups as visible in F and G.
Moreover, templates give to the user an immediate and useful
information about which object the component is related
to, eventually allowing the user to select and remove the
misleading components. e.g. the blue template in image E
is definitely not a face and the elements belonging to this
component could be removed from the final counting.

V. CONCLUSIONS

In this paper we presented an online learning by example
approach, capable to individuate visual motifs in an image
with a minimal supervision by the user, who only needs to
select few visual objects of interest. The approach outputs all
the instances of the target objects in the image, individuating
and extracting different object typologies (e.g. cows and birds).
The approach has been tested on a brand new dataset, dubbed
“RepTile”, characterized by very challenging characteristics
for object counting: different object classes in the same image,
a variable number of instances per type of object, and non-rigid
geometric displacement. This problem cannot be faced with
any of the techniques present in the literature, since they need
training data to work, or images where the repeated patterns
form a rigid structures, as the windows of a skyscraper or a
texture. Future perspectives are to embed the proposed method
into an interactive tool that allows the user to select “good”
and “bad” templates, automatically removing all the detections

provided by undesired components. Another direction will
focus on images where the objects to be analyzed are com-
posed by few pixels: actually, in our experiments, reasonable
results are obtained if the patches are at least of 30×30
pixels. This in practice prevents us to apply our framework
to some instances of crowd counting. In order to reduce the
computational complexity, we can reduce the number of total
transformation matrices (N ) by clustering them into groups of
similar matrices, thus reducing the number of cross-correlation
maps to be computed. Finally, a segmentation module based
on superpixels can be included in the pipeline to refine the final
output, providing a proper foreground/background segmenta-
tion. In such a case, our method could also be embedded into
image post processing tool as Photoshop or Gimp.

APPENDIX A
AFFINE TRANSFORMATION AND LIE ALGEBRA

In geometry, an affine transformation is a function between
affine spaces which preserves points, straight lines and planes.
A generic 2-D affine transformation is represented in the
homogeneous coordinates by means of the matrix G, such
as:

[x′, y′, 1]T = G[x, y, 1]T (10)

where x, y are the coordinates of a generic point in the original
space and x′, y′ are the coordinates after the mapping. G =
[ M t
0 1 ], where M ∈ GL(2) is an invertible 2 × 2 matrix and

t ∈ <2 is a 2× 1 translation vector.
The matrix G can be identified as the group of all invertible

affine transformations from the affine space into itself and it
is a Lie group G called 2-D affine group Aff(2). A Lie group
G is a differentiable manifold such as the group operations,
multiplication and inverse, are differentiable maps. The tangent
space to the identity element I of the group forms a Lie
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algebra g. A Lie group G and its algebra g are related by
the exponential map exp : g→ G such that

G = Exp

(
6∑

k=1

akEk

)
(11)

where {ak}k=1,...,6 are the coefficients related to the basis Ek

chosen as

E1 =
[
1 0 0
0 1 0
0 0 0

]
, E2 =

[
1 0 0
0 −1 0
0 0 0

]
, E3 =

[
0 −1 0
1 0 0
0 0 0

]
,

E4 =
[
0 1 0
1 0 0
0 0 0

]
, E5 =

[
0 0 1
0 0 0
0 0 0

]
, E6 =

[
0 0 0
0 0 1
0 0 0

]
.

Each geometric transformation corresponds to each Ek.
The inverse mapping is given by log : G→ g

Log(G) =
6∑

k=1

akEk (12)

The Lie algebra aff(2) is represented as [ U v
0 0 ], where U ∈

gl(2) and v ∈ <2. A further description of the Lie groups and
Lie algebra can be found in [40].
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